\qquad

Solving Logarithmic \& Exponential situations

Newton's Law of Cooling: $T(t)=T_{a}+\left(T_{0}-T_{a}\right) e^{-k t}$
Where T_{a} is the surrounding air temperature and T_{0} is the initial temperature.
Here k is a constant that depends on the liquid and the environment. We solve for the temperature T at time t.
In most applications of this law, we need to solve for k and/or t. Since both k and t are exponents, we must use logarithms.

1. Suppose the water in a hot tub is heated to 150°. After the heater is turned off, the hot tub takes an hour to cool to 120°. The temperature of the surrounding air is 80°.
a. Use Newton's Law of Cooling to find the temperature of the hot tub after 3 hours.
b. Now let us suppose that we want to know the time t this hot tub will cool down to 85°.
2. The Richter scale is used for measuring the magnitude of an earthquake. The Richter magnitude is given by $R=0.67 \log (0.37 E)+1.46$ where E is the energy (in kilowatt-hours) released by the earthquake.
a. An earthquake releases $15,500,000,000$ kilowatt-hours of energy. What is the earthquake's magnitude?
b. How many kilowatt-hours of energy would an earthquake have to release in order to be a 8.5 on the Richter scale.
3. The wind speed s (in miles per hour) near the center of a tornado is related to the distance d (in miles) the tornado travels by the equation $s=93 \log d+65$.
a. On March 18,1925 , a tornado whose wind speed was about 280 miles per hour struck the Midwest. How far did the tornado travel?
4. Jonas purchased a new car for $\$ 15,000$. Each year the value of the car depreciates by 30% of its value the previous year. In how many years will the car be worth $\$ 500$ (use the simple interest rate formula of $y=a b^{t}$?
5. Brad created a chart that shows the population of a town will increase to 96,627 people from a current population of 11,211 people. The rate of increase is an annual increase of 4.18%. Brad forgot to include the number of years this increase will take. How many years was it? (Solve algebraically using $A=P e^{r t}$ for population growth.)
