## HPC B Log Rules

## LAWS OF LOGARITHMS

Let $a$ be a positive number, with $a \neq 1$. Let $A>0, B>0$, and $C$ be any real numbers.

## Law

1. $\log _{a}(A B)=\log _{a} A+\log _{a} B$

The logarithm of a product of numbers is the sum of the logarithms of the numbers.
2. $\log _{a}\left(\frac{A}{B}\right)=\log _{a} A-\log _{a} B \quad$ The logarithm of a quotient of numbers is the difference of the logarithms of the numbers.
3. $\log _{a}\left(A^{C}\right)=C \log _{a} A$

The logarithm of a power of a number is the exponent times the logarithm of the number.

READ formulas and examples CAREFULLY! These are the rules that we covered in class. Remember that they are related to the exponential rules you already know. The notation at the beginning is only to state the "captain obvious" rules that it would be silly to discuss log base 1 and that we cannot take the log of a negative number.

Please recall from Algebra $2 B$ switching from logarithm form to exponential form.

## $\log _{b} x=y$ is the same as $b^{y}=x$ meaning $5^{3}=125$ is the same as $\log _{5} 125=3$ "Logs solve for exponents" How many times have you heard me say that ©

## Try and check a few:

1-6 $=$ Express the equation in exponential form.

1. (a) $\log _{2} 32=5$
(b) $\log _{5} 1=0$
2. (a) $\log _{10} 0.1=-1$
(b) $\log _{8} 512=3$
3. (a) $\log _{4} 2=\frac{1}{2}$
(b) $\log _{2}\left(\frac{1}{16}\right)=-4$

7-12 $=$ Express the equation in logarithmic form.
7. (a) $2^{3}=8$
(b) $10^{-3}=0.001$
8. (a) $10^{4}-10,000$
(b) $81^{1 / 2}=9$
9. (a) $4^{-3 / 2}=0.125$
(b) $7^{3}=343$

EXAMPLE 1 - Using the Laws of Logarithms to Expand Expressions Use the Laws of Logarithms to rewrite each expression.
(a) $\log _{2}(6 x)$
(b) $\log \sqrt{5}$
(d) $\ln \left(\frac{a b}{\sqrt[3]{c}}\right)$

SOLUTION
(a) $\log _{2}(6 x)=\log _{2} 6+\log _{2} x \quad$ Law
(b) $\log \sqrt{5}=\log 5^{1 / 2}=\frac{1}{2} \log 5 \quad$ Law 3
(c) $\log _{5}\left(x^{3} y^{6}\right)=\log _{5} x^{3}+\log _{5} y^{6} \quad$ Law 1
$=3 \log _{5} x+6 \log _{5} y \quad$ Law 3
(d) $\ln \left(\frac{a b}{\sqrt[3]{c}}\right)=\ln (a b)-\ln \sqrt[3]{c} \quad$ Law 2
$=\ln a+\ln b-\ln c^{1 / 3} \quad$ Law 1
$=\ln a+\ln b-\frac{1}{3} \ln c \quad$ Law 3

EXAMPLE 2 E Using the Laws of Logarithms to Evaluate Expressions Evaluate each expression.
(a) $\log _{4} 2+\log _{4} 32$
(b) $\log _{2} 80-\log _{2} 5$
(c) $-\frac{1}{3} \log 8$

SOLUTION
(a) $\log _{4} 2+\log _{4} 32=\log _{4}(2 \cdot 32) \quad$ Law 1

$$
=\log _{4} 64=3 \quad \text { Because } 4^{\prime}=64
$$

(b) $\log _{2} 80-\log _{2} 5=\log _{2}\left(\frac{80}{5}\right) \quad$ Law 2

$$
=\log _{2} 16=4 \quad \text { Because } 2^{4}=16
$$

(c) $-\frac{1}{3} \log 8=\log 8{ }^{1 / 3}$

Law 3

$$
\begin{array}{ll}
=\log \left(\frac{1}{2}\right) & \text { Property of negative exponents } \\
\approx-0.301 & \text { Use a calculator }
\end{array}
$$

### 4.4 EXERCISES

1-24 $=$ Use the Laws of Logarithms to rewrite the expression in a form with no logarithm of a product, quotient, or power.

1. $\log _{2}(x(x-1))$
2. $\log _{5}\left(\frac{x}{2}\right)$
3. $\log 7^{23}$
4. $\ln (\pi x)$
5. $\log _{2}\left(A B^{2}\right)$
6. $\log _{6} \sqrt[4]{17}$
7. $\log _{3}(x \sqrt{y})$
8. $\log _{2}(x y)^{10}$
9. $\log _{5} \sqrt[3]{x^{2}+1}$
10. $\log _{a}\left(\frac{x^{2}}{y z^{3}}\right)$
11. $\ln \sqrt{a b}$
12. $\ln \sqrt[3]{3 r^{2} s}$
13. $\log \left(\frac{x^{3} y^{4}}{z^{6}}\right)$
14. $\log \left(\frac{a^{2}}{b^{4} \sqrt{c}}\right)$
15. $\log _{2}\left(\frac{x\left(x^{2}+1\right)}{\sqrt{x^{2}-1}}\right)$
16. $\log _{5} \sqrt{\frac{x-1}{x+1}}$
17. $\ln \left(x \sqrt{\frac{y}{z}}\right)$
18. $\ln \frac{3 x^{2}}{(x+1)^{10}}$
19. $\log \sqrt[4]{x^{2}+y^{2}}$
20. $\log \left(\frac{x}{\sqrt[3]{1-x}}\right)$
21. $\log \sqrt{\frac{x^{2}+4}{\left(x^{2}+1\right)\left(x^{3}-7\right)^{2}}}$
22. $\log \sqrt{x \sqrt{y \sqrt{z}}}$
23. $\ln \left(\frac{z^{4} \sqrt{x}}{\sqrt[3]{y^{2}+6 y+17}}\right)$
24. $\log \left(\frac{10^{x}}{x\left(x^{2}+1\right)\left(x^{4}+2\right)}\right)$

## Try and check a few:

## Answers to the odds are at the end

35-44 ■ Rewrite the expression as a single logarithm.
35. $\log _{3} 5+5 \log _{3} 2$
36. $\log 12+\frac{1}{2} \log 7-\log 2$
37. $\log _{2} A+\log _{2} B-2 \log _{2} C$
38. $\log _{5}\left(x^{2}-1\right)-\log _{5}(x-1)$
39. $4 \log x-\frac{1}{3} \log \left(x^{2}+1\right)+2 \log (x-1)$
40. $\ln (a+b)+\ln (a-b)-2 \ln c$
41. $\ln 5+2 \ln x+3 \ln \left(x^{2}+5\right)$
42. $2\left(\log _{5} x+2 \log _{5} y-3 \log _{5} z\right)$
43. $\frac{1}{3} \log (2 x+1)+\frac{1}{2}\left[\log (x-4)-\log \left(x^{4}-x^{2}-1\right)\right]$
44. $\log _{a} b+c \log _{a} d-r \log _{a} s$

## Remember $\ln$ is the same as $\log _{e}$ but we write $\ln$ because it is a special logarithm that is frequently used.

We write this in exponential form and take the logarithm, with base $a$, of each side.

$$
\begin{aligned}
b^{y} & =x & & \text { Exponential form } \\
\log _{a}\left(b^{y}\right) & =\log _{a} x & & \text { Take loga of each side } \\
y \log _{a} b & =\log _{a} x & & \text { Law 3 } \\
y & =\frac{\log _{a} x}{\log _{a} b} & & \text { Divide by } \log _{a} b
\end{aligned}
$$

This proves the following formula.

## CHANGE OF BASE FORMULA

$$
\log _{b} x=\frac{\log _{a} x}{\log _{a} b}
$$

We can now evaluate a logarithm to any base by using the Change of Base Formula to express the logarithm in terms of common logarithms or natural logarithms and then using a calculator.

45-52 = Use the Change of Base Formula and a calculator to evaluate the logarithm, correct to six decimal places. Use either natural or common logarithms.
45. $\log _{2} 7$
46. $\log _{5} 2$
47. $\log _{3} 11$
48. $\log _{6} 92$
49. $\log _{7} 3.58$
50. $\log _{6} 532$

EXAMPLE 5 - Using the Change of Base Formula to Evaluate Logarithms Use the Change of Base Formula and common or natural logarithms to evaluate each logarithm, correct to five decimal places.
(a) $\log _{8} 5$
(b) $\log _{9} 20$

## SOLUTION

(a) We use the Change of Base Formula with $b=8$ and $a=10$ to convert to common logarithms:

$$
\log _{8} 5=\frac{\log _{10} 5}{\log _{10} 8}=0.77398
$$

(b) We use the Change of Base Formula with $b=9$ and $a=e$ to convert to natural logarithms:

$$
\log _{9} 20=\frac{\ln 20}{\ln 9} \approx 1.36342
$$

## Try and check a few:

25-34 ㅌ Evaluate the expression.
25. $\log _{5} \sqrt{125}$
26. $\log _{2} 112-\log _{2} 7$
27. $\log 2+\log 5$
28. $\log \sqrt{0.1}$
29. $\log _{4} 192-\log _{4} 3$
30. $\log _{12} 9+\log _{12} 16$

Answers to rewriting forms:

| $1-c$ |  | $7-12$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $1(a)$ | $2^{5}=32$ | (b) $5^{0}=1$ | $7(a) \log _{2} 8=3$ | (b) $\log ^{2} 0.001=-3$ |
| $2(a)$ | $10^{-1}=.1$ | (b) $8^{3}=512$ | $8(a) \log _{10000=4}$ | (b) $\log _{81} 9=\frac{1}{2}$ |
| $3(a)$ | $4^{1 / 2}=2$ | (b) $2^{-4}=\frac{1}{16}$ | $9(a) \log _{4} 0.125=-\frac{3}{2}$ | (b) $\log _{7} 343=3$ |

Answers to evens:



Answers to odd problems:

## Section 4.4 page 317

1. $\log _{2} x+\log _{2}(x-1)$ 3. $23 \log 7$
2. $\log _{2} A+2 \log _{2} B \quad$ 7. $\log _{3} x+\frac{1}{2} \log _{3} y$
3. $\frac{1}{3} \log _{5}\left(x^{2}+1\right)$
4. $\frac{1}{2}(\ln a+\ln b)$
5. $3 \log x+4 \log y-6 \log z$
6. $\log _{2} x+\log _{2}\left(x^{2}+1\right)-\frac{1}{2} \log _{2}\left(x^{2}-1\right)$
7. $\ln x+\frac{1}{2}(\ln y-\ln z)$
8. $\frac{1}{4} \log \left(x^{2}+y^{2}\right)$
9. $\frac{1}{2}\left[\log \left(x^{2}+4\right)-\log \left(x^{2}+1\right)-2 \log \left(x^{3}-7\right)\right]$
10. $\frac{1}{2} \ln x+4 \ln z-\frac{1}{3} \ln \left(y^{2}+6 y+17\right)$
11. $\frac{3}{2}$
12. 1
13. 3
14. $\ln 8$
15. 16
16. $\log _{3} 160$
17. $\log _{2}\left(A B / C^{2}\right)$
18. $\log \left[\frac{x^{4}(x-1)^{2}}{\sqrt[3]{x^{2}+1}}\right]$
19. $\ln \left[5 x^{2}\left(x^{2}+5\right)^{3}\right]$
20. $\log \left[\sqrt[3]{2 x+1} \sqrt{(x-4) /\left(x^{4}-x^{2}-1\right)}\right]$
21. 2.807355
22. 2.182658
23. 0.655407
24. 4.165458
